
Faking an iVote decryption proof
Why the decryption proof flaw identified in the
SwissPost system affects the iVote system too

Vanessa Teague

The University of Melbourne

Parkville, Australia

vjteague@unimelb.edu.au

November 14, 2019

The proof of correct decryption specified in the iVote protocol description
is susceptible to the same attack we identified already in the equivalent part
of the SwissPost/Scytl system.

This could, for instance, be used by a cheating decryption service to change
valid votes into nonsense that would not be counted.

1. Introduction

In earlier work with Sarah Jamie Lewis and Olivier Pereira [LPT19], we showed that an
error in the implementation of the Fiat-Shamir heuristic allowed a cheating decryption
service in the SwissPost-Scytl system to fake a decryption proof. The proof could pass
verification even though a valid vote had been incorrectly decrypted as nonsense.

At the time, the NSWEC issued a press release in which they stated “Based on its
assessment of the information supplied by these academics, the NSW Electoral Com-
mission is confident that the new issue they describe in the Swiss Post system is not
relevant to the iVote system.”1

In this note I show that that assessment was incorrect. iVote’s decryption proof and
verification specification are slightly different from those of the SwissPost system, but
the same attack can still be performed after a slight modification. This is demonstrated
below.

1https://www.elections.nsw.gov.au/About-us/Media-centre/News-media-releases/

NSW-Electoral-Commission-iVote-and-Swiss-Post

1

This analysis is based on the protocol description [Scy19]. I have not (yet) inspected
the code. Since the error affects the verification process, it is the specification rather
than the current implementation that defines the system’s security anyway—if iVote had
independent verification, it would be based on an independent implementation of the
verification spec, not on running Scytl’s code.

Nor have I examined the rest of the protocol to understand how this possibility for
cheating fits with the rest of the process. Like the equivalent cheat for the SwissPost
system, it assumes that the cheating decryption service can generate its own ciphertexts.
I have not checked whether this is the case for the iVote mixing and decryption service.
This note simply takes the proof of correct decryption given in Section 2.6.3.2 of the
protocol description, and shows how it can be faked to produce a proof that passes
verification but is not true.

2. iVote background

Like the SwissPost system, iVote runs El Gamal in a subgroup of Z∗p of order q =
(p−1)/2, with generator g. Remember that a standard ElGamal encryption of messagem
with public key pk is a pair (C0, C1) = (gr,m(pk)r). In iVote, the public key is a series of
values: PK = (pk 1, pk 2, . . . , pkn) = (gsk1 , gsk2 , . . . , gskn), where sk = (sk 1, sk 2, . . . , skn)
is the (multi-valued) secret key. A ciphertext is an encryption of an n-tuple M =
(m1,m2, . . . ,mn), computed as

C = (gr,m1.pk
r
1,m2.pk

r
2, . . . ,mn.pk

r
n)

where r is chosen randomly from [0, q − 1].

3. Producing a false decryption proof—iVote version

A proof of proper decryption—that the ciphertext C = (c0, c1, . . . , cn) decrypts to mes-
sage M = (m1,m2, . . . ,mn)—can be constructed by anyone who knows the secret key
sk . The proof generation and verification are specified in Section 2.6.3.2. of the iV-
ote protocol description. The Prover specification is called ProveDec and is shown in
Figure 1; the Verification specification is called VerifyDec and is shown in Figure 2.

3.1. An obvious inconsistency between the hash inputs

First observe that the inputs to the hash function, in Step 2 of ProveDec and Step 3 of
VerifyDec, are inconsistent. Even if we take pk (in VerifyDec) to match pk 1, pk 2, . . . , pkn
(in ProveDec), there is a major discrepancy in the hashing of the ciphertexts: ProveDec
hashes all n divided ciphertexts c1/m1, c2/m2, . . . , cn/mn, while VerifyDec hashes only
c2/m—it is not clear what m is. The failure to hash c1/m1 and c3/m3 . . . cn/mn means
that VerifyDec would not accept the output of a prover that was implemented according
to this spec.

2

Figure 1: ProveDec: Decryption Proof Specification

Figure 2: VerifyDec: Decryption Proof Verification Specification. Note the highlighted
inconstency in hash inputs.

3

The obvious patch is to change Step 3 of VerifyDec to match Step 2 of ProveDec.2

This would make the proof complete, that is, faithfully-implemented verification would
accept anything produced by an honest prover.

However, the proof would still not be sound. Even with this correction, the verifier
can be tricked into accepting a proof of a decryption statement that is not true. This is
derived below.

3.2. Even with the same hash inputs, verification can be tricked

In this section we assume that VerifyDec is corrected, as described above, so that it
hashes the same inputs as ProveDec. This section describes the attack for the simple
case where n = 1, i.e. standard El Gamal. The extension to multi-element El Gamal
is in Section 3.2.2.

ProveDec((C,M), SK) is very similar to the analogous function in the SwissPost sys-
tem. It proceeds as follows:

1. picks a random s1 from [0, q − 1],

2. computes h = H(pk 1|c1/m1|gs1|cs10 |“DecryptionProof ′′),

3. sets z1 = s1 + sk 1.h,

4. outputs h and z1.

H is a cryptographic hash function.
The main problem here is exactly the same as the problem we identified in the Swiss-

Post system: the hash does not constitute a commitment to c0. Although c0 is intended
to be an input, the value cs10 does not in fact bind a particular c0—a cheating prover can
claim a different value for c0 later by effectively (and undetectably) claiming a different
s1 from that used to construct gs1 . To see how this works, we first review the Verification
spec.

VerifyDec(c,m, (h, z))) receives as input an ElGamal ciphertext C = (c0, c1), a plain-
text m1, and a proof (h, z1). It proceeds as follows:

1. sets a1 = gz1 .pk−h1 ,

2. sets b1 = cz10 .(c1/m1)
−h,

3. checks that h = H(pk 1|c1/m1|a1|b1|“DecryptionProof ′′).

If the check in Step 3 passes, it accepts; otherwise it rejects.

2There is also another typo in that M ’s first element is written as m0, but there is no m0—the
ciphertext has a zero-th element but the message does not.

4

3.2.1. Exploiting the problem

We show deviations from the specification in bold. A cheating prover can construct a
fake proof as follows:

1. pick a random s1 and a random x from [0, q − 1],

2. compute h = H(pk 1|c1/m1|gs1|gx|“DecryptionProof ′′),

3. set z1 = s1 + sk 1.h,

4. output h and z1.

The verifier’s computation of a1 will be correct by construction. In order to ensure
that the hashes match, the cheating prover needs to generate c0 so that the verifier in
Step 2 computes the value of b1 matching the prover’s last input to the hash, that is
gx = cz10 .(c1/m1)

−h. Hence

c0 = (c1/m1)
h/z1 .gx/z1 . (1)

Now (h, z1) passes verification as a decryption proof that (g, pk1, c0, c1/m1) is an El
Gamal encryption of 1.

However, it is highly unlikely that this is truthful, i.e. that c1/m1 = csk1
0 . Taking

logarithms base g, and letting s = dlogg(c1/m1), this equation would be satisfied only if
s = sk 1.(x+ sh)/z1 (mod q), i.e., if s(z1− hsk 1) = x.sk 1 mod q or, using the definition
of z1, if s.s1 = x.sk 1 (mod q). But x and s1 are independent values chosen from Zq
(where q is the size of the ElGamal group, around 22047 for the proposed parameters),
so this coincidence occurs with negligible probability. Hence we have a valid proof for a
fact that is not true.

This allows for a large set of faked proofs, because it commits only to c1/m1, not to
c1 or m1. Hence it can be used as a proof that a ciphertext (c0, c1) decrypts to m1, for
any values for which c1/m1 equals the value input to the hash.

3.2.2. Extending to multi-element El Gamal

It is straightforward to extend this attack to the multi-element version of El Gamal that
iVote uses—this consists simply of choosing values for the messages m2,m3, . . . ,mn that
are consistent with the (cheating) value of c0 derived above.

To explain the details, it helps first to write the prover and verifier in their multi-
element versions, which are almost exactly the same as the single-element versions except
that the first few steps are repeated n times.

Multi-element ProveDec((C,M), SK) is as follows. The prover:

1. picks a sequence of random values s1, s2, . . . , sn, from [0, q − 1],

2. computes
h = H(pk 1|c1/m1|c2/m2| . . . |cn/mn|gs1|gs2| . . . |gsn|cs10 |cs20 | . . . |csn0 |“DecryptionProof ′′),

5

3. sets zi = si + sk i.h, for i = 1 . . . n,

4. outputs h and Z = (z1, z2, . . . , zn).

Multi-element VerifyDec(c,m, (h, z))) (corrected as described above) receives as input
an ElGamal ciphertext C = (c0, c1, c2, . . . , cn), a plaintext M = (m1,m2, . . . ,mn), and a
proof (h, Z). It proceeds as follows:

1. sets ai = gzi .pk−hi , for i = 1 . . . n,

2. sets bi = czi0 .(ci/mi)
−h, for i = 1 . . . n,

3. checks that h = H(pk 1|c1/m1|c2/m2| . . . |cn/mn|a1|a2| . . . an|b1|b2| . . . bn|“DecryptionProof ′′).

If the check in Step 3 passes, it accepts; otherwise it rejects.
The cheating prover sets up the inputs to the hash as follows. It chooses arbitrary

constants α, β, γ and sets:

• si = αsk i,

• xi = βsk i, and

• ci/mi = γsk i , for i = 1 . . . n.

It constructs the cheating proof as follows:

1. computes
h = H(pk 1| . . . |pkn|c1/m1| . . . |cn/mn|gs1| . . . |gsn|gx1| . . . |gxn|“DecryptionProof ′′),

2. (honestly) sets zi = si + sk i.h, for i = 1 . . . n,

3. outputs h and Z = z1, z2, . . . , zn.

It then computes c0 as given in Equation 1.
Since each zi was computed honestly, the first equation in the verification check,

ai = gzi .pk−hi , will pass for all i = 1 . . . n. Step 2 is the challenge. We need to show
that the value of c0 computed in Equation 1 makes the equation bi = czi0 .(ci/mi)

−h pass
for all i, where bi is the value we’ve called gxi in the cheating prover’s construction. To
check:

czi0 .(ci/mi)
−h =

= ((c1/m1)
h/z1 .gx1/z1)zi .(ci/mi)

−h by Equation 1

= ((c1/m1)zi/z1

ci/mi
)h.gx1.zi/z1

= (γ
sk1(ski(α+h))/(sk1(α+h))

γski
)h.gx1(sk i(α+h))/(sk1(α+h)) by construction

= 1h.gβsk i by construction
= gxi .

So the value of c0 computed in Equation 1 allows the verification equations to pass
for all i.

Again the prover has committed only to ci/mi, not to ci or mi individually, so it can
choose any message M as long as the ratios ci/mi match what was hashed.

6

Figure 3: ProveDec: Full Decryption Verification Specification

4. Discussion

The problem can be corrected by implementing the strong version of the Fiat-Shamir
Heuristic. In particular, c0 should be included in the hash (and also g, p and q unless
these are chosen in a verifiably random way).

However, the iVote protocol probably contains many other opportunities for trusted
components to alter votes. The full decryption verification is shown in Figure 3. It is not
clear where the input ciphertexts come from, and does not say that the verifier should
check that they match the mixnet’s output. This introduces the risk that votes could
be altered by simply subsituting them in transit among the various components of the
process.

It has been suggested that the decryption proof flaw is mitigated because the mix
server signs its output, which is the input to the decryption proof. If the verification
spec were amended (and I believe it has been) to check that signature, then this slightly
strengthens the attacker model—the mix server and the decryption service would have to
collude to produce a fake proof. However, it does not solve the problem—I believe that
the mixer and decryption service are both running Scytl software and both administered
by the NSWEC, so the assumption that they cannot be simultaneously compromised by
the same entity does not seem justified. In any case, it does not address the possibility
of vote substitution before or after these components.

A much better solution would be to post votes on a public bulletin board so that in-
dependent observers could verify the mixing and decryption process. Public verifiability
of that process should be achievable even with NSW’s very complex ballots.

However, this does not address the verification of the voting-casting process: how
could voters verify that their encrypted vote accurately reflected their intentions? This

7

I believe is an unsolved problem in practice, and is made substantially more difficult by
the complexity of NSW votes. We have explained elsewhere why the current verification
app does not provide genuine evidence [CEL+19].

5. Conclusion

iVote suffers from the same error in its decryption proof verification that SwissPosts’s
system did. A cheating prover can produce a decryption proof that passes verification
even though the claimed decryption is false. This is still possible even after the obvious
inconsistency in hash inputs between iVote’s decryption prover and verifier is corrected.

If the source code and documentation had been made openly available for analysis
before the election, as the Swiss system was, then these errors might have been accurately
understood and mitigated before the election.

iVote is not a verifiable election system and does not provide meaningful evidence that
its output accurately represents the will of voters.

References

[CEL+19] Chris Culnane, Aleksander Essex, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. Knights and knaves run elections: Internet voting and un-
detectable electoral fraud. IEEE Security & Privacy, 17(4):62–70, 2019.

[LPT19] Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. How not to
prove your election outcome. 2019. https://people.eng.unimelb.edu.

au/vjteague/HowNotToProveElectionOutcome.pdf.

[Scy19] Scytl. NSW electoral commission iVote voting system voting protocol de-
scription, May 2019.

A. Notes on disclosure

An earlier version of this report was sent to NSWEC and Scytl on 30 Sep 2019, 45 days
before its public release, in keeping with the terms of the source code access agreement.

8

